If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+11y-6=0
a = 6; b = 11; c = -6;
Δ = b2-4ac
Δ = 112-4·6·(-6)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{265}}{2*6}=\frac{-11-\sqrt{265}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{265}}{2*6}=\frac{-11+\sqrt{265}}{12} $
| -4(2x-6)=-8x-24 | | (10-x)=4x/5 | | (1-x)(2x-3)=5x | | 4.7x+14=2.2x-6 | | 5=4-2c | | 2/3x+6+1/3=10+1/3 | | -12-2x=x+15 | | (3x-14)=(12x+10) | | -3x+7=3x+4 | | 115/x=85 | | 5y-4=-34 | | 0.5x+0.75=9 | | -2x+7=2x+4 | | Y=a*10.25-5 | | -42x=-7x-35 | | 8-3x=-5x-4 | | 4x+1+5x+2=360 | | 1.20+0.06x=0.10x | | 3/4-z=5/6 | | 2s+5=4s+7 | | 4x+28=-2x-2 | | 20x-16=4x+-9 | | 20x-16=4x+-6 | | 20x-16=4x+-7 | | 20x-16=4x+-3 | | 20x-16=4x+-4 | | 20x-16=4x+-2 | | 20x-16=4x+-1 | | s-3=2s+5 | | 20x-16=4x+30 | | 20x-16=4x+0 | | X^4-12x^2+24-5=0 |